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1. INTRODUCTION

This report presents the results of a preliminary study on the design of a

rod hard fusible link PROM. The study began by surveying the various fuse

technologies and the effects of radiation on MOS integrated circuits.

Based on teat information, a set of design rules was defined which will al-

b
	

low the fabrication of a rod hard PROM using a Si-gate CMOS process. A

preliminary cell layout was completed and the programming concept defined.

A block diagram is used to describe the circuit components required for a

U design. Finally a design goal data sheet was generated giving target

values for the AC, DC, and radiation parameters of the circuit.

t

i

1



l'

t	 II. SURVEY OF FUSE TECHNOLOGIES AND DESIGN APPROACHES USED

IN PROGRAMMABLE ROWS

i	 Fuse Techiologies

'	 Fusible link PROM's are typically fabricated with either NiCr, TiW or poly-

silicon fuses. Each mate ,-ial has advantages and is used by one or more

manufacturers in currently available parts.

!	 The earliest bipolar PROM's used a NiCr fuse technology and, as a result,

this fuse material has been studied extensively. Much of this resear.h has

been directed toward understanding a failure !node which causes programmed

fuses to relink. This phenomena, known as "growback," is the result of a

field induced mechanism where metal dendrite formation occurs in the gap

region of the blown fuse. It has been shown (1) that fuses which are blown

! by relatively slow risetime, low level programming pulses have some residu-

al NiCr in the gap and exhibit a higher probability of relinking. Lnder high

stress conditions. This same study concludes that "growback" is not a sig-

nificant long term reliability problem provided that, after programming,

the devices receive a dynamic bur°-in at maximum temperature and Vc c , fol-

lowed by a functional test. Fairchild, Signetirs, Harris and Motorola con-

tinue to use NiCr fuses for their bipolar PROM's.

Due to the potential reliability problem associated with NiCr, several PROM

manufacturers have switched to a TiW technology for their newer designs.

TiW doesn't exhibit the "growback" phenomena and it provides several addi-

tional advantages with little process modification. Sincc the fuse resis-

tance is lower, typically 40Z v<+rsus 300A for a NiCr fuse, tre TiW parts

•	 are faster and programming voltages can be reduced. The Schottky process

t	 used to fabricate most bipolar PROM's incorporates a TiW layer as a diffu-

sion barrier between the Al metallization and the Platinum Silicide

Schottky, therefore the use of TiW fuses requires only minor process chang-

es. Monolithic Memories, National Semiconductor, and Texas Instruments re-

place the NiCr link with a TiW fuse.

U	 i	
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G Polysilicon is another fuse technology which has proven to be highly reli-

able and free of any growback effects (2). N-doped poly is typically used

and is deposited with standard Si-gate MOS processing techniques. This

jtechnology is well defined and allows very close control over the critical

fuse dimensions. Another advantage of this technology is the ability to

vary the fuse resistance by doping the polysilicon. This allows the de-

signer a degree of freedom not easily obtainable with metal fuses. Even

though polysilicon is not normally available in a bipolar process, some

manufacturers such as Intel and AMD have felt that it's benefits justify

the increased processing complexity that it's use requires. The Harris

6611 and 6641 are the only MOS fusible link PROM's currently available and

they both incorporate poly fuses.

Polysilicon Fuse Design

After z.udyinc the various fuse technologies, polysilicon appears to be the

best fuse material for the fabrication of a rad-hard CMOS PROM. Several

Rad-hard Si-gate processes exist which could accommodate poly fuses without

process modification. One is the 411 Si-gate CMOS process developed by

Sandia National Labs.

S	 When designing a fusible link PROM, the most challenging task is the design

i	 of a fuse which can be easily blown by the programminq circuitry, yet with-

stand worst case read current levels. This job is simplified if the pro-

gramming current level and the real current level are made significantly

different. Typically, this ratio is at l:dst 10:1. After a programming
current is defined, it is necessary to size the fuse so that it will open
consistently at a current slightly below this level. A theoretical analy-

sis indicates that the current netes:,ary to blow the fuse is proportional

I	 to the square root of the fuse width, therefore tight control over the fuse

•	 width is necessary to insure acceptable programming yield and reliable

operation.
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Another consideration in the fuse design is the choice of fuse resistance.

In this case, an engineering tradeoff must 6e made in order to achieve op-

timum circuit operation. Since the fuse resistance contributes to the bit

line RC time constant, it is desirable to keep this resistance as low as

possible insuring fast operation. However, a low fuse resistance will in-

crease the size of the memory cell and programming circuit due to the re-

quirement that the impedance of tAe programming circuit match that of the

fuse. This insures maximum power transfer during programming.

In the preparation of this report, both Intel and Harris poly fuse PROM's

were studied. The data on Intel fuses was obtained from published papers

(2, 3) while the Harris data came from measurements of actual parts.
0

Intel fuses are fabricated from an N-type polysilicon layer, 3400 A thick,

which is doped to match the programming circuit impedance. The width of

the fuse notch is targeted at 2.2u and is designed to blow within IVs with

a 30 mA programming pulse. The sense current for these fuses is 2 mA

nominally. Intel reports (2) that the actual fuse widths follow a Gaussian

Z	 distribution with 99.99% of the fuses greater than lu in width. Fuses

greater than .3u wide were proven to be stable at the 2 mA sense current.

Harris Semiconductor has two CMOS PROM's on the market, the 256x4 6611 and

the 512xR 6641. The polysilicon fuses used for these devices were measured

to be 1.6x7y for the 6611 and 2x7j for the 6641. Programming current data

was not available but these values will be measured at a later time.

In studying the Intel and Harris PROM's, it was discovered that both manu-

facturers remove the passivation glass from the fuse area. Empirically, it

was determined (?) that a more complete and easier burnout could be accom-

plished by the presence of 02 . In addition, removal of the P-glass allows

+	 the fuse to change shape as it opens. This lack of passivation poses no

reliability problems since all junctions remain covered with only the un-

programmed fuses exposed.

s
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MEC Fuse Test Circuit

To supplement the information gained from studying Intel and Harris PROM's,

a fuse test circuit was included on a test chip being processed by Sandia

Labs. This circuit, laid out using Sandia's 411 RAD hard CMOS process, will

provide empirical data on the relationship between fuse size and program-

' ming current. Three fuse sizes and three access transistor sizes were in-

cluded along with two bipolar devices. A plot of this test circuit is in-

cluded on the following page.
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I11. RADIATION EFFECTS STUDY

1

.Radiation Hardened Device Design

The process modifications used to produce radiation tolerant CMOS circuits

typcally concentrate an minimizing threshold voltage shifts and preventing

latchup. Relatively minor process changes can yield an order of magnitude

improvement in the radiation hardness of standard circuits, however for

operation at 106 rad levels, special circuit techniques must be employed as

well.

When an MOS device is exposed to ionizing radiation some electrons in the

gate oxide gain enough energy to break away from their atoms and be swept

away by the applied gate potential. This causes a net rusitive charge to

accumulate in the oxide and a shift in the n and p channel thresholds to-

ward more negative voltages. In a standard CMOS process, V tn can become

negative and JVtp j can exceed the power supply voltage after high radiation

doses. Rad hard processes contr ail charge build up in the oxide to prevent

these large threshold shifts ano the resultant circuit failure.

Studies have shown the factors having the greatest impact on positive

i	 charge build up are the oxide thickness and its method of growth (4). The

i	 oxide thickness relationship is particularly significant since the thresh-

old shift is a cubic function of thickness. For this reason, rad hard pro-
0

cesses use a gate oxide thickness of approximately 500 A rather than the
:	 o

750 A typically used in a standard process. The oxide growth method used in

most rad hard processes is a dry oxidation at 1000°C. Empirically this has

been determined to yield the hardest oxides (4).

' In addition to the process changes just discussed, two commonly used tech-

niques have been found to degrade radiation hardened oxides and are there-

fore avoided. These are high temperature (>925°C) anneals and E-beam alum-

inum depositions. Lower temperature anneals and thermally evaporated alul-

inum are used instead.

E'	 ^	 7
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While threshold voltage shifts increase gradually with total r&diaticn

I gise, a more serious problem can occur under high dose rate caiditions.

Radiation induced photocurrents can cause the parasitic PNPN device, inher-

ant in bulk CMOS structures, to latch up allowing large currents to flow

„Oetween the supplies. This can be prevented by reducing the maximum para-

sitic transistor gain product, P pnp P npn, to less than unity. Generally

rad hard processes accomplish this by limiting minority carrier lifetimes

with gold doping.

	

:	 Layout changes can also improve the radiation hardness of CMOS devices.

One common change is the addition of p+ guard rings around the n-channel

transistors. This insures that the channel of the n-type device stops

within the p-well and doesn't short to the n-type substrate. Layouts with

no guard bands require the p-wt.1 concentration to be higher with an in-

crease in Vtn as a result. Another layout rule which improves rad hardness

is the requirement for frequent Vss tie downs of the p-well and guard band-

	

,	 This prevents voltage drops across the p-well under high photocurrent con-

	

e	 ditions. These voltage drops are a necessary condition for la<chup to oc-

cur.

a

B. Design Concepts for Radiation Hardened CMOS Circuits

s

Process and layout changes can reduce the effect of radiatirm on CMOS de-

vices but circuits designed to operate at high dose levels must still allow

for significant parameter variations. For example, p-channel threshold

shifts are approximately -4V at 10 6 BADS, even for a rad hard process. In

general, rad hard circuits should be designed to track parameter variations

rather than depending on the absolute value of those parameters. One exam-

=	 ple is the use of differential sense circuits rather than simple inverter

sense amps.

Another consideration is the relative performance of individual devices.

Oevicps which perform poorly after radiation should be enlarged or compen-

sated in some manner. Since the p-channel device loses a great deal

8
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of drive due to its large threshold shifts it will not be very effective

after irradiation at pulling a node to the plus supply. For this reason.

circuits which precharge lines high will experience less speed degradation

after irradiation.

C

{	 One aspect that is particularly important in the design of a rad hard

memory is signal timing. If care isn't taken. signal transistionc may oc-

cur out of sequence after irradition. To prevent this from occurring, cir-

cuit operation should be carefully simulated with both pre- and post- irra-

diation device parameters.
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11. PROPOSLD FUNCTIONAL KOCK DIAGRAMM,

block diagram for the proposed raciation hardened PROM is includeG on the

following pa g e. This diagram indicates the circuits necessa ry for the con-

struction of a 4 ►. PROM or g anized 5120 with latched data ind address lines

anc three state output buffers.

10
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V. DESIGN RULE DEFINITION

—In defining the layout design rules for this PROM, the decision was made to

use a guLrd banded process similar to Sandia Labs' 4u Si-gate CMCS. This

is a 9-level, ion implanted process incorporating all of the radiation

hardening techniques described in Section III of this report. The basic

design rules are shown below with the full set of rules included in the re-

mainder of this section.

Desi q n Rule Basic Values in Microns

dL M Rules

Align,nert--Mask run out
Featu ,e size
Misalignment

TOTAL

Additional Alignment

tolerance for
indirectly aligned
l e vels, per level
of remoteness

Sideways diffusion

Maximum depletion region
in substrate
in p-well

^Jrimum feature size

metal
i	 pol_ysilicon pitch

in interconnect

contact

polysilicor width

p-well depth

T

2.5

0.E

80% xj

4.0 ( 12V)
1.5

4 x 4

4

3x3

3

6 - 7

12



`I .S	 SANDIA SILICON GATE CMOS DESIGN RULES IN MICRONS

4 11 M Rules

Minimum, metal	 lines 4

I Minimum metal	 space 4

Minimum polysilicon	 interconnectl
F	 (a)	 line 3!	

(b)	 space 4
(c)	 Gate	 length 3

Minimum polysilicon	 to oxide st p p 2 2

Minimum W width 4

Minimur^	 spacing	 N +	inside	 well;	 N + defined	 by:

(a)	 polysilicon 4

(b)	 N + mask 4

Minimum N+ to	 p + guar ri	 band;	 N+ defined by:

(a)	 thick	 oxide 7

(b)	 polysilicon 7.5

(c)	 N + mask 8

Minimum p +	implant	 width 4

Minimum contact 3 x	 3

Minimum contact	 opening	 to	 polysilicon	 edqe:t

(a)	 over	 thin	 oxide 2.5

(b) over	 thick	 oxide 1.5

Minimum contact	 opening	 to non-poly defined

diffusion edge	 inside	 diffused	 area 2

Minimum contact	 opening	 (metal	 to poly or

diffusion)	 from oxide	 step 2

Minimum	 contact	 overlap	 for	 shortin g	diffusion 4

Minimum overlap	 to	 short	 diffused	 regions	 to g ether 2

•	 Minimum metal	 contact	 overlap on	 all	 sides 0.5

Minimum thick	 oxide	 width 4

Minimum thick	 oxide	 space 4

Minimum p + quard	 band width 4

Minimum p + drain to p + guard	 band space;

(a)	 thick	 oxide 13
(b)	 polysilicon 13.5
(c)	 p+ mask 14

I For	 runs	 of	 aluminum	 lines	 parallel	 to	 pol y silicon	 lines	 >	 120U M,

aluminum must	 be	 interdigitated	 line to	 line	 with	 polysilicon	 lines.

2polysilicon	 can	 "do g leg"	 alonq	 an	 oxide	 step,	 straddlinq	 it	 for no more

than	 241j M	 if	 the	 polysilicon	 is	 5y M wide.
13
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Minimum p+ source at V dd to guard band; p + defined by:
(a) thick oxide

(b) polysilicon

(c) p + mask

! Inside edge of guard band to outside p-well distance

Minimu.r thick oxide to p' guard band inside edge

Minimum polysilicon overlap outside thick oxide

Minimum polysilicon overlap of p + guard band

Minimum distance of edge of p+ mask to edge of
thick oxide where thick oxide defines p + edge

Minimum p-well to p+ drain when p + drain defined by:

(a) thick oxide

(b) polysilicon

(c) p' mask

Minimur- p-well to p' source at V dd ; p+ source defined by:

(a) thick oxide

(b) polysilicon

(c) p + mask

Minimum contact to p+ guard band edge

Minimum p-well to p-well (isolated)

Minimum p+ to p+ both sides active defined by:

(a) same mask, non-poly

(b) polysilicon

(c) thick oxide

Minimum gate length of "both-sides-active" p-chan transistor

Minimum bonding pad to p+

Minimum bonding pad to metal

Minimum scribe channel oorder to p' or metal

Minimum input pad to pao space

N.inimum output pad to pad space, unbuffered

Minimum buffered output pad to pad space

Minimum pad size

Mini fr.jm protective oxide overlap of contact pad

Minimum Vd d and Vss bus width

Au

4

4

4

3

16
16.5

17

12

1?.5

13.0

3

19

10
4

10

4

40

40

50

220

220

320

100 x 100

4

16

t
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I
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Mask Alignment Sequence

'	 1 - p -well

2 - p + guard band (align to p-well)

3 - thick oxide opening (align to p-well)

4 - polysilicon (align to thick oxide)

5 - N + implant (align to polysilicon)

6 - P + implant (align to polysilicon)

7 - contact opening (align to polysilicon)

8 - metal (align to contact opening)

9 - protective oxide (align to metal bondinq pads)

I
I
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VI. PRELIMINARY MEMORY CELL DESIGN

f

Based on information obtained in the fuse technology stL!dy, a preliminary

cell design has been completed. This cell uses a p-channel access transis-

tor with a 2011 aspect ratio and a pol- fuse 2- wide and 31j long. With the

supply set at 15 volts, the programming current would be approximately 15

mA. After results are obtained from the MEC fuse test circuit, a precise

value for the prograTrning current will be known and the device sizes can be

finalized. This preliminary topology has been generated using the design

rules specified in the previous section and occupies chip area of 40 by

47 i,. This is expected to be reduced during the design phase. A checkplot

j	 of this layout is included on the following page.

t
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VII. PROGRAMMING TECHNIOUES AND CIRCUIT DESIGN CONCEPT

-Programm i ng Circuit Concept

A dia gram depictinq the programminq	 circuitry	 is	 shown below and will	 be

used to explain the	 programming conc^pt.	 In a	 normal	 read operation, the

accessed memor y cell	 is	 connected	 to	 the	 sense	 amplifier	 by a transmission

gate	 in the	 selected column	 decoder.	 Since the sense amp has a	 high	 input

4	
impedance.	 only	 a	 very	 small	 current	 will	 flow	 in	 this mode. During pro-

;	 gramming,	 a	 low	 impedance	 path	 to	 ground	 is	 provided allowing a current to

flow which	 is	 large	 enouqh to	 blow the	 fuse.	 The	 programming logic	 pro-

vides	 this	 path only when	 the	 pro g ram enable	 pin	 is high	 and the appropri-

ate	 output	 pin	 is	 low.	 Durinq	 this	 time,	 the output	 buffers are tri-stated

allowin q the	 output	 pins	 to	 be	 used	 as	 data	 inputs.

vee

'	 00v	 DECODEi PROM ► RECHAROE
O_^ R CELL	 1

1I

^	 I
1

1
1

1	 1
--------^ X64

1 COLUMN O_
DECODE

COLUMN
DECODER	

OUTPUT
I
I

I
x1

EMA^LE

BEMs	 0U7PU7
AMP

PR06RAM ^____ _ PR06RAM

EwAsLE	 LOGIC

t
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Proaramr,ina Procedure

f
,	 As fabricated, all memory cells are in the logic zero state and can be

{	 selectively changed to the logic one state by the controlled application of

-programming potentials and pulses. During programming, a given word is

i	 addressed and the bits within that word are programmed one at a time.

After an entire word has been programmed, the next word is addressed. The

complete programming sequence consists of the following steps:

1. The address of the first word to be prc g rammed is applied to the
PROM, and latched by the risin q ed ge of the chip enable input.

2. The outputs are placed in the high impedance state by the falling

ed qe of output enable (G).

3. Vcc is raised to the programming level of 15 volts.

4. 7ie data output pin of the bit to be pro g rammed is pulled low and
all other outputs are pulled up to Vcc.

5. A 500 i s ,else is applied to the program enable pin.

6. The data output pins are allowed to float and the Vcc pin is

returned to 10.0 volts.

7. Chip enable (E) is returned to ground.

8. A normal read cycle is performed to verify that the bit has been

programmed successfully.

9. If step 8 indicates the bit has programmed norma -ily, return to

step one and program the next bit of the addressed word. If step

8 is unsuccessful, program the same bit again.

10. After all bits of the first word have been proyrammed, repeat 1-9

for the rer^aininq 511 words.

19
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	 VIII. CHIP SIZE ESTIMATES

I

	

	 -Using the dimensions of the preliminary cell layout, a 4K PROM would re-

quire an area of 101x118 mils for its 64x64 cell array. Assuming typical

dimensions for the remaining circuitry, the total chip size would be ap-

proximately 140x200 mils. For an 8K PROM, a different cell layout would

probably be used. A longer and narrower cell, approximately 32x59 microns,

would allow two 64x64 arrays to be placed side by side in an area 161 mils

i

	

	 widt and 149 mils tall. The total chip size would now be about 200 mils

square.

}
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t	 IX. DESIGN GOAL DATA SHEET

I	 - The following pages contain a design goal data sheet which provides target

values for su pply voltages, radiation hardness levels and the typical AC

and DC parameters. The IEEE/JEDEC approved specification nomenclature has

been used throuohout.

1
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MICROELECTRONICS ENSIN[[RiNO CORPORATION

MEC__ 6642 D
  r\

r ~
jP1	 512x8 RAD HARD CMOS PROM

NATIONAL AERONAUTICS
MC

SPACE ADMINISTRATION	 DESIGN GOAL  DATA SHEET

JET PROPULSION LABORATORY

GENERAL DESCRIPTION	 FEATURES
The MEC-6642P is a 512 x 8 radiation	 • FIELD PROGRAMMABLE
hardened CMOS PROM, in the popular 24
pin, byte wi d pi pout. Polys i 1 i eor	 • RAO HARD TO 1 0 RAD9 S I
fuse links provide reliable programm-
ing and are easily implemented in the	 • POLY S I FUSE LINKS
rad-hard Si-gate process. This pro-	 • LOW POWER	 $s0 r V R.AR
cess, in Conjunction with radiation
tolerant circuit techniq;es, allows 	 • FAST ACCESS TIME	 1511^A may 03T RDP
the device to maintain itt ;i,w power	 tBBn. max 03TRAD

consumption and fast access time wW1 	 • OPERATES WITH S TO 10 V SUPPLY
a total radiation dose of up to 10
ROS Si. Aodress and data latches	 • TTL COMPATIBLE WITH 5 V SUPPLY
are provided on chip allowing simple
interfacing with microprocessors	 • P I NOUT SIMILAR  TO HARRIS 6641

which use multiplexed address and	 • THREE STA T E OUTPUTS
data bus structures.

• ADDRESS AND DATA LATCHES ON CHIP

• WIDE TEMPERATURE RANGE
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ABSOLUTE MAXIMUM RATINGS OPERATING CONDITIONS

I .

1
t

j

t

i

l

SUPPLY VOLTAGE	 ♦19.5 V SUPPLY VOLTAGE 5./V	 to 10.OV

INPUT VOLTAGE	
(GND -0.4V1 AMBIENT	 -55C to •125C
to	 ( Vcc	 *9.41 TEMPERATURE

STORAGE TEMPERATURE	 -65C to •150C

DC CHARACT ERISTICS

SYMBOL PARAMETER

ICCSB ISTANDBY SUPPLY CURRENT

ICC	 (OPERATING SUPPLY CURREN

MIN	 MAX UNITS TESTCONDITIONS

50	 pA	 Vcc-10.OV

10	 MA I Ycc-10.0Vf-1MHZ

AC CHARACTE RISTICS 	 (Vc c-10.0V)

i

i

SYMBOL PARAMETER MIN MAX UNITS

TEHOV CHIP ENABLE ACCESS TIME 200 NS

TAVOV ADDRESS ACCESS TIME 22(d NS

TAVEH ADDRESS SET UP TIME 20 NS

TEHAX

TELEH

ADDRESS HOLD TIME 60 NS

CHIP ENABLE NEGATIVE PULSE	 WIDTH 150 NS

NS

NS

TEHEL

TEHEH

TEHAX

CHIP ENABLE POSITIVE PULSE	 WIDTH

READ CYCLE TIKE

200

350

20CHIP ENABLE TO OUTPUT	 ENABLE 100 NS

TGHOX OUTPUT ENABLE TO OUTPUT ENABLE 20 100 NS

TGLOZ OUTPUT ENABLE TO OUTPUT DISABLE 20 100 NS

•
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1

I

i

READ CYCLE

I	 1	 I	 I	 I	 I	 I	 I
TAr/r-	 ^	 1	 I	 I

1	 I	 1	 f	 t	 I

1	 I	 I	 I	 I	 I

Ar[N	 [NA1t	 (	 TAV[M
•	 1	 t

t	 1

A	 Aoo vALlo	 ^	 M[. Aoo

^	 T[M[N —^"

1
—^ 7[L[11	 —^" 1[04[L	 T[L[NT—T

I	 I	 1

I	 1	 1	 1

E	 t —	 —^ TcN/^	 I
1	 I	 I	 1	 1

I	 T[NO- 	 I	 I	 I	 I

0010 VALID	 1	 I	 II	 I	 I	 I
T6L02	 T/NOx	 1	 1/L^t	 I	 I

I

I	 I	 I	 I	 I	 I	 I	 I

I	 I	 I	 I	 I

I	 I	 I	 I	 I	 I	 I	 I
C7	 --J-	 I	 I	 I	 ^

1	 1	 I	 I	 I	 I	 I	 I

I	 I	 I	 I	 1	 I	 I	 I

^	 I	 1	 I	 I	 1	 1	 ^

TIME
REFERENCE	 -1	 0	 1	 2	 3	 4 5 6

TRUTH TABLE

I
I

1

i

(IMF
AaFIR [ MC[

INPUTS OUTPUT
POINT	 IN READ CYCLE

MEMORY DISABLED

CYCLE	 BEGINS , ADO.	 ARE LATCHED

OUTPUT ENABLED

—1 X L L Z

0 V L Z

1 X 14

h l

H

_H

X

2

3

X

X

-

V OUTPUT	 VALID

OUTPUT LATCHED 
READ ACCOMPLISHED_

1--ZU_IF-UI--ZI-5P9LEQ	 —_-- --

MEMORY	 DISABLED	 (SAM E 	 AS	 — 1)

—**,— V

4--

5

6

V
--

V

L L Z

L L. Z

ZV .Or— L CYCLE ENDS.NEW CYCLE BEGINS
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1
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18 —
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Q 0
OUTPUT 11CT11IE

1

P
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10^
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PROGRAMMING CYCLE

Max

TEMrF

i bw TRI{E

----------------------
00011E//E/ Al 0110 OM fee	 `-----

=-^{^r►OL — — — — — — _ TOIirN^ 	 ^	 TiAll

^OWT ►UT LOx •/110/RAM i:^ X!?" 

TOL►M
	

T KO"

- TFNPL

PROGRAMMING SYSTEM TIMING

fT11801 FAAAMETIA 1111. MAX. UNITS

TOVIN AODAEff $IT UP T111I !00 M/

TENOR ODORM MOLD T I ME !OB 118

IILEM CHIP EMAOLI LOW TIME see Y/

1E111F CHIP ENABLE NIBM 10 VCC RISING DELOT $00 M/

IOLVV OUTPUT CkAK E LOW TO VCC 016108 DELAY M M/

TOL82 OUTPUT EMABLF LOV 10 OU TPUT HIGH 2 TOO 11f

1016E

TWOOL

VCC	 1118E	 10 ►A08PAMNI148 LEVIL

VCC NIBM 10 CUTPVT LOW DfLAT

1.• ps

!B•

!00

300

116

TOL ►H

T ►MIL

W& SETUP TIM M/

FROIAAMPIMO PULSE WIOTM 600 _ll/

TPLON Data HOLD TIM Iits no

tool" OUTPUT HIGH TO VCC MOBMAI OILAT f00 - - Mf

TROLL
VCC HIGH TO VCC MOPMAL FALL 111E I.O

i
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